[1] LaVelle JM, Lovato C, Stephenson CL. Pedagogical considerations for the teaching of evaluation[J]. Eval Program Plann, 2020,79:101786. DOI: 10.1016/j.evalprogplan.2020.101786. [2] Tao Y, He Y, Zhang W. An application of face recognition technology in university classroom teaching[C]//2020 IEEE 2nd International Conference on Computer Science and Educational Informatization (CSEI). Xinxiang, China:IEEE, 2020:190-193. [3] Whitehill J, Serpell Z, Lin Y, et al. The faces of engagement: automatic recognition of studentengagement from facial expressions[J].IEEE T AFFECT COMPUT,2014,5(1):86-98.DO1:10.1109/TAFFC.2014.2316163. [4] Miao X, Yu Z, Liu M. Using partial differential equation face recognition model to evaluate students' attention in a college chinese classroom[J]. Advances in Mathematical Physics, 2021(7): 1-10. DOI:10.1155/2021/3950445. [5] Yang B, Yao Z, Lu H, et al. In-classroom learning analytics based on student behavior, topic and teaching characteristic mining[J]. Pattern Recognition Letters, 2020,129: 224-231. DOI:10.1016/j.patrec.2019.11.023. [6] Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research [J]. J Chiropr Med, 2016,15(2):155-163. DOI: 10.1016/j.jcm.2016.02.012. [7] Zhang X, Zhang X, Dolah J. Intelligent classroom teaching assessment system based on deep learning model face recognition technology[J/OL]. Scientific Programming, 2022(6):1-10[2022-11-10] . DOI:10.1155/2022/1851409. [8] Tang J, Zhou X, Zheng J. Design of intelligent classroom facial recognition based on deep learning[J]. Journal of Physics Conference Series, 2019,1168(2):022043. DOI:10.1088/1742-6596/1168/2/022043. [9] Song Z. Facial expression emotion recognition model integrating philosophy and machine learning theory[J]. Front Psychol, 2021,12:759485. DOI: 10.3389/fpsyg.2021.759485. |