[1] 方晏红, 张扬, 李航, 等. 毕业后医学教育的现状和思考[J]. 中国继续医学教育, 2020,12(14):85-87. DOI: 10.3969/j.issn.1674-9308.2020.14.032. [2] 阮恒超, 樊立洁, 耿晓北, 等. 住院医师规范化培训基地评估结果的分析与思考[J]. 中华医学教育杂志, 2021,41(6):563-566. DOI: 10.3760/cma.j.cn115259-20210113-00064. [3] Xu Y, Jiang Z, Ting D, et al. Medical education and physician training in the era of artificial intelligence[J]. Singapore Med J, 2024,65(3):159-166. DOI: 10.4103/singaporemedj.SMJ-2023-203. [4] Lancet T. AI in medicine: creating a safe and equitable future[J]. Lancet, 2023,402(10401):503. DOI: 10.1016/S0140-6736(23)01668-9. [5] Masters K. Artificial intelligence in medical education[J]. Med Teach, 2019,41(9):976-980. DOI: 10.1080/0142159X.2019.1595557. [6] Cooper A, Rodman A. AI and medical education — a 21st-century pandora′s box[J]. N Engl J Med, 2023,389(5):385-387. DOI: 10.1056/NEJMp2304993. [7] Klar R, Bayer U. Computer-assisted teaching and learning in medicine[J]. Int J Biomed Comput, 1990,26(1-2):7-27. DOI: 10.1016/0020-7101(90)90016-n. [8] Pei L, Ak M, Tahon N, et al. A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network[J]. Sci Rep, 2022,12(1):10826. DOI: 10.1038/s41598-022-14983-4. [9] Suk HI, Lee SW, Shen D, et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J]. Neuroimage, 2014,101:569-582. DOI: 10.1016/j.neuroimage.2014.06.077. [10] Wang S, Li C, Wang R, et al. Annotation-efficient deep learning for automatic medical image segmentation[J]. Nat Commun, 2021,12(1):5915. DOI: 10.1038/s41467-021-26216-9. [11] Suk HI, Lee SW, Shen D, et al. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis[J]. Brain Struct Funct, 2015,220(2):841-859. DOI: 10.1007/s00429-013-0687-3. [12] Feng Y, Li J, Zhang X. Research on segmentation of brain tumor in MRI image based on convolutional neural network[J]. Biomed Res Int, 2022,2022:7911801. DOI: 10.1155/2022/7911801. [13] Shen J, Zhang C, Jiang B, et al. Artificial intelligence versus clinicians in disease diagnosis: systematic review[J]. JMIR Med Inform, 2019,7(3):e10010. DOI: 10.2196/10010. [14] Wu J, Yuan Z, Fang Z, et al. A knowledge-enhanced transform-based multimodal classifier for microbial keratitis identification[J]. Sci Rep, 2023,13(1):9003. DOI: 10.1038/s41598-023-36024-4. [15] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115-118. DOI: 10.1038/nature21056. [16] Pandey PU, Ballios BG, Christakis PG, et al. Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs[J]. Br J Ophthalmol, 2024,108(3):417-423. DOI: 10.1136/bjo-2022-322183. [17] Chaddad A, Peng J, Xu J, et al. Survey of explainable AI techniques in healthcare[J]. Sensors (Basel), 2023,23(2):634. DOI: 10.3390/s23020634. [18] Altintas L, Sahiner M. Transforming medical education: the impact of innovations in technology and medical devices[J]. Expert Rev Med Devices, 2024,21(9):797-809. DOI: 10.1080/17434440.2024.2400153. [19] Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study[J]. BMC Musculoskelet Disord, 2021,22(1):407. DOI: 10.1186/s12891-021-04260-2. [20] Fang Z, Xu Z, He X, et al. Artificial intelligence-based pathologic myopia identification system in the ophthalmology residency training program[J]. Front Cell Dev Biol, 2022,10:1053079. DOI: 10.3389/fcell.2022.1053079. [21] Burke OM, Gwillim EC. Integrating artificial intelligence-based mentorship tools in dermatology[J]. Acad Med, 2024,99(6):e4. DOI: 10.1097/ACM.0000000000005705. [22] Meetschen M, Salhofer L, Beck N, et al. AI-assisted X-ray fracture detection in residency training: evaluation in pediatric and adult trauma patients[J]. Diagnostics (Basel), 2024,14(6):596. DOI: 10.3390/diagnostics14060596. [23] Aldeman N, de Sá Urtiga Aita KM, Machado VP, et al. Smartpath(k): a platform for teaching glomerulopathies using machine learning[J]. BMC Med Educ, 2021,21(1):248. DOI: 10.1186/s12909-021-02680-1. [24] Tabuchi H, Engelmann J, Maeda F, et al. Using artificial intelligence to improve human performance: efficient retinal disease detection training with synthetic images[J]. Br J Ophthalmol, 2024,108(10):1430-1435. DOI: 10.1136/bjo-2023-324923. [25] Retamero JA, Gulturk E, Bozkurt A, et al. Artificial intelligence helps pathologists increase diagnostic accuracy and efficiency in the detection of breast cancer lymph node metastases[J]. Am J Surg Pathol, 2024,48(7):846-854. DOI: 10.1097/PAS.0000000000002248. [26] Muntean GA, Groza A, Marginean A, et al. Artificial intelligence for personalised ophthalmology residency training[J]. J Clin Med, 2023,12(5):1825. DOI: 10.3390/jcm12051825. [27] Ricotta DN, Richards JB, Atkins KM, et al. Self-directed learning in medical education: training for a lifetime of discovery[J]. Teach Learn Med, 2022,34(5):530-540. DOI: 10.1080/10401334.2021.1938074. [28] Desai SV, Burk-Rafel J, Lomis KD, et al. Precision education: the future of lifelong learning in medicine[J]. Acad Med, 2024,99(4S Suppl 1):S14-S20. DOI: 10.1097/ACM.0000000000005601. [29] Boscardin CK, Gin B, Golde PB, et al. ChatGPT and generative artificial intelligence for medical education: potential impact and opportunity[J]. Acad Med, 2024,99(1):22-27. DOI: 10.1097/ACM.0000000000005439. [30] Alhur A. Redefining healthcare with artificial intelligence (AI): the contributions of ChatGPT, Gemini, and Co-pilot[J]. Cureus, 2024,16(4):e57795. DOI: 10.7759/cureus.57795. [31] Laohawetwanit T, Apornvirat S, Kantasiripitak C. ChatGPT as a teaching tool: preparing pathology residents for board examination with AI-generated digestive system pathology tests[J]. Am J Clin Pathol, 2024,162(5):471-479. DOI: 10.1093/ajcp/aqae062. [32] Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine[J]. N Engl J Med, 2023,388(13):1233-1239. DOI: 10.1056/NEJMsr2214184. [33] Gordon M, Daniel M, Ajiboye A, et al. A scoping review of artificial intelligence in medical education: BEME Guide No. 84[J]. Med Teach, 2024,46(4):446-470. DOI: 10.1080/0142159X.2024.2314198. [34] 梁菊, 李瑛. 模拟医学教育:医学教学发展的必然趋势[J].肾脏病与透析肾移植杂志, 2015,24(3):266-269. [35] Gendia A. Cloud based AI-driven video analytics (CAVs) in laparoscopic surgery: a step closer to a virtual portfolio[J]. Cureus, 2022,14(9):e29087. DOI: 10.7759/cureus.29087. [36] Hisey R, Camire D, Erb J, et al. System for central venous catheterization training using computer vision-based workflow feedback[J]. IEEE Trans Biomed Eng, 2022,69(5):1630-1638. DOI: 10.1109/TBME.2021.3124422. [37] Mirchi N, Bissonnette V, Yilmaz R, et al. The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine[J]. PLoS One, 2020,15(2):e229596. DOI: 10.1371/journal.pone.0229596. [38] Baloul MS, Yeh VJ, Mukhtar F, et al. Video commentary & machine learning: tell me what you see, I tell you who you are[J]. J Surg Educ, 2022,79(6):e263-e272. DOI: 10.1016/j.jsurg.2020.09.022. [39] Siyar S, Azarnoush H, Rashidi S, et al. Machine learning distinguishes neurosurgical skill levels in a virtual reality tumor resection task[J]. Med Biol Eng Comput, 2020,58(6):1357-1367. DOI: 10.1007/s11517-020-02155-3. [40] Knudsen JE, Ghaffar U, Ma R, et al. Clinical applications of artificial intelligence in robotic surgery[J]. J Robot Surg, 2024,18(1):102. DOI: 10.1007/s11701-024-01867-0. [41] Okuda Y, Bryson EO, DeMaria S Jr, et al. The utility of simulation in medical education: what is the evidence?[J]. Mt Sinai J Med, 2009,76(4):330-343. DOI: 10.1002/msj.20127. [42] McGaghie WC, Issenberg SB, Petrusa ER, et al. A critical review of simulation-based medical education research: 2003-2009[J]. Med Educ, 2010,44(1):50-63. DOI: 10.1111/j.1365-2923.2009.03547.x. [43] Muthusami A, Mohsina S, Sureshkumar S, et al. Efficacy and feasibility of objective structured clinical examination in the internal assessment for surgery postgraduates[J]. J Surg Educ, 2017,74(3):398-405. DOI: 10.1016/j.jsurg.2016.11.004. [44] Ginsburg S, van der Vleuten C, Eva KW. The hidden value of narrative comments for assessment: a quantitative reliability analysis of qualitative data[J]. Acad Med, 2017,92(11):1617-1621. DOI: 10.1097/ACM.0000000000001669. [45] Yilmaz Y, Jurado NA, Ariaeinejad A, et al. Harnessing natural language processing to support decisions around workplace-based assessment: machine learning study of competency-based medical education[J]. JMIR Med Educ, 2022,8(2):e30537. DOI: 10.2196/30537. [46] Wood EA, Ange BL, Miller DD. Are we ready to integrate artificial intelligence literacy into medical school curriculum: students and faculty survey[J]. J Med Educ Curric Dev, 2021,8:1967551794. DOI: 10.1177/23821205211024078. [47] Civaner MM, Uncu Y, Bulut F, et al. Artificial intelligence in medical education: a cross-sectional needs assessment[J]. BMC Med Educ, 2022,22(1):772. DOI: 10.1186/s12909-022-03852-3. [48] Banerjee M, Chiew D, Patel KT, et al. The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers[J]. BMC Med Educ, 2021,21(1):429. DOI: 10.1186/s12909-021-02870-x. [49] Naamati-Schneider L. Enhancing AI competence in health management: students′ experiences with ChatGPT as a learning tool[J]. BMC Med Educ, 2024,24(1):598. DOI: 10.1186/s12909-024-05595-9. [50] Hswen Y, Voelker R. New AI tools must have health equity in their DNA[J]. JAMA, 2023,330(17):1604-1607. DOI: 10.1001/jama.2023.19293. [51] Recai Y, Alexander W, Nykan M, et al. Continuous monitoring of surgical bimanual expertise using deep neural networks in virtual reality simulation[J]. npj Digital Medicine, 2022,5(1):54. DOI: 10.1038/s41746-022-00596-8. |