[1] 王萱, 刘时乔, 刘宇, 等. 基于教考分离的医学高校题库建设探索与研究—以《临床中药学》为例[J].时珍国医国药,2020,31(2):445-447. DOI: 10.3969/j.issn.1008-0805.2020.02.065. [2] Zaidi N, Grob KL, Monrad SM, et al. Pushing critical thinking skills with multiple-choice questions: does bloom's taxonomy work?[J]. Acad Med, 2018,93(6):856-859. DOI: 10.1097/ACM.0000000000002087. [3] Vegi V, Sudhakar PV, Bhimarasetty DM, et al. Multiple-choice questions in assessment: Perceptions of medical students from low-resource setting[J]. J Educ Health Promot, 2022,11:103. DOI: 10.4103/jehp.jehp_621_21. [4] Burns ER. ″Anatomizing″ reversed: use of examination questions that foster use of higher order learning skills by students[J]. Anat Sci Educ, 2010,3(6):330-334. DOI: 10.1002/ase.187. [5] Morrison S, Free KW. Writing multiple-choice test items that promote and measure critical thinking[J]. J Nurs Educ, 2001,40(1):17-24. DOI: 10.3928/0148-4834-20010101-06. [6] Downing SM. Assessment of Knowledge with Written Test Forms[M]//Norman GR, Van Der Vleuten CPM, Newble D I, et al. International Handbook of Research in Medical Education. Dordrecht: Springer Netherlands, 2002: 647-672. [7] Surry LT, Torre D, Durning SJ. Exploring examinee behaviours as validity evidence for multiple-choice question examinations[J]. Med Educ, 2017,51(10):1075-1085. DOI: 10.1111/medu.13367. [8] Cecilio-Fernandes D, Kerdijk W, Bremers AJ, et al. Comparison of level of cognitive process between case-based items and non-case-based items of the interuniversity progress test of medicine in the Netherlands[J]. J Educ Eval Health Prof, 2018,15:28. DOI: 10.3352/jeehp.2018.15.28. [9] National Board of Medical Examiners. NBME item-writing guide: constructing written test questions for the health sciences[EB/OL]. [2024-05-10] . https://www.nbme.org/sites/default/files/2021-02/NBME_Item%20Writing%20Guide_R_6.pdf. [10] 席峥, 贾若君, 柳雯, 等. 医师资格考试笔试命题科学性与答题技巧的思考[J].中华医学教育杂志,2008,28(1):126-128. DOI: 10.3760/cma.j.issn.1673-677X.2008.01.051. [11] 温丽虹, 童杰峰, 雷红梅, 等. 临床医学考试命题现状及技巧[J].中国高等医学教育,2022(3):43-44,47. DOI: 10.3969/j.issn.1002-1701.2022.03.020. [12] 卢燕, 张颖, 何佳, 等. 我国医师资格考试10年改革回顾与展望[J].中国医疗管理科学,2022,12(5):1-6. DOI: 10.3969/j.issn.2095-7432.2022.05.001. [13] 陈紫妮, 林小丹, 姚卫光. 我国高等医学教育资源配置效率评价及空间计量分析[J].中国卫生事业管理,2024,41(1):78-83. [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[Z]. arXiv:1706.03762 [cs.CL]. DOI:10.48550/arXiv.1706.03762. [15] Zhao WX, Zhou K, Li J, et al. A survey of large language models[Z]. arXiv:2303.18223 [cs.CL].DOI: 10.48550/arXiv.2303.18223. [16] Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models[Z]. arXiv:2206.07682 [cs.CL]. DOI: 10.48550/arXiv.2206.07682. [17] Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with humanfeedback[Z]. arXiv:2203.02155 [cs.CL]. DOI: 10.48550/arXiv.2203.02155. [18] Kung TH, Cheatham M, Medenilla A, et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models[J]. PLOS Digit Health, 2023,2(2):e0000198. DOI: 10.1371/journal.pdig.0000198. [19] Lee P, Bubeck S, Petro J. Benefits, limits, and risks of gpt-4 as an AI chatbot for medicine[J]. N Engl J Med, 2023,388(13):1233-1239. DOI: 10.1056/NEJMsr2214184. [20] Thirunavukarasu AJ, Ting D, Elangovan K, et al. Large language models in medicine[J]. Nat Med, 2023,29(8):1930-1940. DOI: 10.1038/s41591-023-02448-8. [21] Sallam M. ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns[J]. Healthcare (Basel), 2023,11(6):10322. DOI: 10.3390/healthcare11060887. [22] Luke N, Taneja R, Ban K, et al. Large language models (ChatGPT) in medical education: Embrace or abjure?[J]. The Asia Pacific Scholar, 2023, 8(4): 50-52. DOI: 10.29060/TAPS.2023-8-4/PV3007. [23] Wang L, Chen X, Deng X, et al. Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs[J]. NPJ Digit Med, 2024,7(1):41. DOI: 10.1038/s41746-024-01029-4. [24] Meskó B. Prompt engineering as an important emerging skill for medical professionals: tutorial[J]. J Med Internet Res, 2023,25:e50638. DOI: 10.2196/50638. [25] Prompt engineering - OpenAI API[EB/OL]. [2024-05-10] . https://platform.openai.com/docs/guides/prompt-engineering. [26] Heston T F, Khun C. Prompt engineering in medical education[J]. International Medical Education, 2023, 2(3): 198-205. DOI: 10.3390/ime2030019. [27] Kıyak YS, Emekli E. ChatGPT prompts for generating multiple-choice questions in medical education and evidence on their validity: a literature review[J]. Postgrad Med J, 2024, 11:23061.DOI: 10.1093/postmj/qgae065. [28] Wei J, Bosma M, Zhao VY, et al. Finetuned language models are zero-shot learners[Z].arXiv:2109.01652 [cs.CL]. DOI: 10.48550/arXiv.2109.01652. [29] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[Z]. arXiv:2005.14165 [cs.CL]. DOI: 10.48550/arXiv.2005.14165. [30] Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits reasoning in large language models[Z]. arXiv:2201.11903 [cs.CL]. DOI: 10.48550/arXiv.2201.11903. [31] Wang X, Wei J, Schuurmans D, et al. Self-consistency improves chain of thought reasoning in language models[Z]. arXiv:2203.11171 [cs.CL]. DOI: 10.48550/arXiv.2203.11171. [32] Yao S, Yu D, Zhao J, et al. Tree of thoughts: deliberate problem solving with large language models[Z]. arXiv:2305.10601 [cs.CL]. DOI: 10.48550/arXiv.2305.10601. [33] 通义千问_大模型服务平台百炼-阿里云帮助中心[EB/OL]. [2024-05-10] . https://help.aliyun.com/document_detail/2713153.html. [34] 李国建, 何惧, 丁一民, 等. 医学考试中A2型客观题长度、难度和区分度关系的初步研究[J].中华医学教育探索杂志,2017,16(7):653-656. DOI: 10.3760/cma.j.issn.2095-1485.2017.07.002. [35] 李国建, 朱智威, 何惧. 融合型试题在医学考试中的应用探索[J].高校医学教学研究(电子版),2016,6(2):49-53. DOI: 10.3969/j.issn.2095-1582.2016.02.015. [36] Coşkun Ö, Kıyak YS, Budako lu I . ChatGPT to generate clinical vignettes for teaching and multiple-choice questions for assessment: a randomized controlled experiment[J]. Med Teach, 2024:1-7. DOI: 10.1080/0142159X.2024.2327477. |